

Nedal Aluminium BV

Groenewoudsedijk 1 3528 BG Utrecht

P.O. Box 2020 3500 GA Utrecht The Netherlands

info@nedal.com

www.nedal.com

+31 (0)30 292 57 11

ALLOY DATA SHEET EN-AW 7020[AlZn4.5Mg1]

(Type: High strength structural alloy)

The alloy EN AW-7020 is a high strength weldable extrusion alloy for highly loaded structural applications. The relative low formability of the alloy limits the complexity of the shapes that can be extruded. Typical applications are highly loaded construction parts, such as in rail transport, aircraft storage containers, (ponton)bridges and mobile cranes.

Chemical composition according to EN573-3 (weight%, remainder Al)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	remarks	others	
									each	total
max.	max.	max.	0.05-	1.0-	0.10-	4.5-		Zr 0.08-0.20	max.	max.
0.35	0.40	0.20	0.50	1.4	0.35	5.0	_	Zr+Ti 0.08-0.25	0.05	0.15

Mechanical properties according to EN755-2

Temper*	Wallthickness e*** [mm]	Yield stress Rp _{0.2} [MPa]	Tensile strength Rm [MPa]	Elong A [%]	ation A ₅₀ [%]	Hardness** HB
T6	≤ 40	290	350	10	8	105

^{*}Temper designation according to EN515: T4-Naturally aged to a stable condition, T5-cooled from an elevated temperature forming operation and artificially aged, T6-Solution heat treated, quenched and artificially aged, (T6 properties can be achieved by press quenching)

Physical properties (approximate values, 20°C)

Density	Melting range	Electrical Conductivity	Thermal Conductivity	Co-efficient of thermal	Modulus of Elasticity
[kg/m ³]	[°C]	[MS/m]	[W/m.K]	Expansion 10 ⁻⁶ /K	[GPa]
2770	600-650	19-23	130-160	23.1	~70

Weldability¹

Gas: 3 MIG: 1 Resistance welding: 6 Spot welding: 3

Typical filler materials (EN ISO18273): SG-AlMg5Cr(A) or SG-Al4.5Mn0.7(A) or SG-Al4.5MnZr. The alloy exhibits a good recovery of mechanical properties after welding, approaching the original values of the base metal (depending on welding conditions). These properties can be achieved after natural aging for a prolonged period or after aan additional artificial aging treatment.

Machining characteristics¹

T4 temper: 3 T6 temper: 2 Hard protecting Decorative/bright/colour anodising: 2 anodising: 3

Corrosion resistance¹ General: 2 Marine: 4

¹Relative qualification ranging from 1-very good to 6 unsuitable

Coating properties¹

February 2018 Rev. 02

^{**} Hardness values are for indication only