

Nedal Aluminium BV

Groenewoudsedijk 1 3528 BG Utrecht

P.O. Box 2020 3500 GA Utrecht The Netherlands

info@nedal.com www.nedal.com

+31 (0)30 292 57 11

ALLOY DATA SHEET EN-AW 7003[AlZn6Mg0.8Zr]

(Type: High strength structural alloy)

The alloy EN AW-7003 is a high strength extrusion alloy for highly loaded structural applications. Typical applications are scaffolding elements, mobile cranes, lifts, air freight containers, etc.

Chemical composition according to EN573-3 (weight%, remainder AI)

Si	Fe	Cu	Mn	Ma	Cr	Zn	Ti	remarks	others	
31	16	Cu	19111	ing	Ci	211	11	Tellialks		
									each	total
max.	max.	max.	max.	0.50-	max.	5.0-	max.	Zr 0.05-	max.	max.
0.30	0.35	0.20	0.30	1.0	0.20	6.5	0.00	0.25	0.05	0.15

Mechanical properties according to EN755-2

Temper*	Wallthickness e*** [mm]	Yield stress Rp _{0.2} [MPa]	Tensile strength Rm [MPa]	Elong A [%]	ation A ₅₀ [%]	Hardness** HB
T5	All	260	310	10	8	95

^{*}Temper designation according to EN515: T4-Naturally aged to a stable condition, T5-cooled from an elevated temperature forming operation and artificially aged, T6-Solution heat treated, quenched and artificially aged, (T6 properties can be achieved by press quenching)

Physical properties (approximate values, 20°C)

Trysical properties (approximate values, 20°C)									
Density	Melting range	Electrical	Thermal	Co-efficient of	Modulus of				
		Conductivity	Conductivity	thermal	Elasticity				
[kg/m³]	[°C]	[MS/m]	[W/m.K]	Expansion	[GPa]				
				10 ⁻⁶ /K					
2770	600-650	19-23	130-160	23.1	~70				

Weldability¹

MIG: 1 Gas: 3

Typical filler materials (EN ISO18273): SG-AlMg5Cr(A) or SG-Al4.5Mn0.7(A) or SG-Al4.5MnZr. The alloy exhibits a good recovery of mechanical properties after welding, up to 90% of the original values of the base metal (depending on welding conditions). These properties can be achieved after natural aging for a prolonged period or after aan additional artificial aging treatment.

Machining characteristics1

T4 temper: 3 T5 temper: 2

Corrosion resistance¹

General: 2 Marine: 4

The alloy is however susceptible to stress corrosion cracking

Coating properties¹

Hard protecting Decorative/bright/colour anodising: 2 anodising: 3

February 2018 Rev. 02

^{**} Hardness values are for indication only

¹Relative qualification ranging from 1-very good to 6 unsuitable